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Abstract 
Entropy maximization to maximum likelihood, con- 
strained jointly by the best available experimental phases 
and by a sufficiently good envelope, can bring about 
substantial model-independent map improvement, even 
at medium (3.1 A) resolution [Xiang, Carter, Bricogne 
& Gilmore (1993). Acta Cryst. D49, 193-212]. In the 
crystal structure determination of the Bacillus stearother- 
mophilus tryptophanyl-tRNA synthetase (TrpRS), how- 
ever, the following had to be dealt with simultaneously: 
(1) a serious lack of isomorphism in the heavy-atom 
derivatives, resulting in large starting-phase errors; and 
(2) an initially poorly known molecular envelope. Be- 
cause the constraints - both phases and envelope - were 
insufficiently well determined at the outset, maximum- 
entropy solvent flattening as previously applied was 
unsuccessful. Rather than improving the maps, it led to a 
deterioration of their quality, accompanied by a dramatic 
decrease of the log-likelihood gain as phases were 
extended from about 5/k resolution to the 2.9 A limit 
of the diffraction data. This deadlock was broken by the 
identification of strong reflections, which were initially 
unphased and which were inaccessible by maximum- 
entropy extrapolation from the phased ones, and by 
permutation of the phases of these reflections so as 
to sample the space of possible electron-density and 
envelope modifications they represented. Permutation 
was carried out by successive full and incomplete 
factorial designs [Carter & Carter (1979). J. Biol. Chem. 
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254, 12219-12223] for 28 strong reflections selected 
in decreasing order of their 'renormalized' structure- 
factor amplitudes. The permuted reflections included 
one reflection for which the probability distribution 
from multiple isomorphous replacement with anomalous 
scattering (MIRAS) indicated an incorrect phase with a 
high figure of merit and which consequently had a large 
renormalized structure factor. A similar permutation was 
carried out for six different binary choices related to the 
calculation and description of the molecular envelope. 
Permutation experiments were scored using the log- 
likelihood gain and contrasts for each main effect were 
analyzed by multiple-regression least squares. Student 
t tests provided significant and reliable indications for 
a large majority of the permuted reflections and for 
all six hypotheses related to the molecular envelope. 
The resulting phase improvement made it possible to 
assign positions (hitherto unobtainable) for nine of the 
ten selenium atoms in an isomorphous difference Fourier 
map for selenomethionine-substituted TrpRS crystals 
and hence to solve the structure. Phase-permutation 
methods continued to be useful in producing improved 
maps from all the available isomorphous-replacement 
phase information and therefore played a critical role in 
solving the structure. This process rescued phases for 
the tetragonal TrpRS structure (now solved) from an 
otherwise crippling lack of isomorphism. It represents 
the first application of a fully fledged Bayesian phase- 
determination process [Bricogne (1988). Acta Cryst. 
A44, 517-545] to the solution of an unknown structure 
and demonstrates the feasibility of using these methods 
with low-to-medium-resolution data. 

.-Iota ( 'ry.sla//ogral~hica Sc~tion .'l 
ISSN 0108-7673 c'1994 



DOUBLIE, XIANG, GILMORE, BRICOGNE AND CARTER 165 

1. Introduction 

Tetragonal crystals of the Bacillus stearothermophilus 
tryptophanyl-tRNA synthetase (TrpRS) have resisted 
structure solution for more than a decade. The reasons 
for this recalcitrance lie in the fact that derivatization 
with most heavy-atom reagents leads to a lattice- 
preserving loss of isomorphism, which, in turn, has 
prevented us from interpreting difference Patterson 
maps involving the native amplitudes and hence from 
using amplitude differences for phase determination. 
Further substitution of previously derivatized crystals 
with additional heavy atoms, however, was found to 
yield doubly derivatized crystals that are ce~tsiderably 
more isomorphous with singly derivatized crystals than 
any of them are with native crystals. Successive 
derivatization thus provided a strategy for solving the 
phase problem for TrpRS crystals. Unfortunately, even 
when the heavy-atom sites were identified and initial 
phases calculated, the phasing power was low for all 
derivatives and electron-density maps were of very poor 
quality because of the errors arising from the remaining 
non-isomorphism. These errors were reduced to a certain 
extent through the use of a maximum-likelihood phase- 
refinement program (Otwinowsky, 1991) but this still did 
not produce an interpretable map. 

Our previous experience (Xiang, Carter, Bricogne & 
Gilmore, 1993) with maximum-entropy solvent flatten- 
ing (MESF) led us to expect that this procedure would 
improve the map sufficiently to produce an interpretable 
electron-density map. However, in the absence of a 
reliable envelope, the MESF process was not sufficiently 
constrained to produce an interpretable map from initial 
phases of such poor quality. Attempts to use an envelope 
previously derived by ab initio phase determination 
for structure-factor amplitudes of its indicator function 
obtained by X-ray contrast variation (Carter, Crumley, 
Coleman, Hage & Bricogne, 1990) were hindered by the 
fact that the correct orientation of this envelope was not 
apparent from cross-rotation functions, so it could not be 
positioned correctly in the tetragonal unit cell. We were 
thus left with the task of correcting phase errors while at 
the same time defining the molecular envelope directly 
from electron-density maps calculated with poor-quality 
phases. 

This difficulty was eventually overcome by subordi- 
nating the MESF process to a phase-permutation process 
designed to sample simultaneously different phase 
choices for a number of reflections with unavailable 
or unreliable MIRAS phases and by monitoring the 
log-likelihood-gain (LLG) statistic. Previous work had 
shown the LLG to be a powerful criterion for 
comparing hypotheses about unknown phases for a 
small protein structure (Gilmore, Henderson & Bricogne, 
1991) and this experience encouraged us to apply 
the method in the current context of an unknown 
structure with a limited amount of phase information. 

In the course of the successful application of this 
process to phase determination, we found that it was 
equally effective when we permuted hypotheses about 
possible modifications of the molecular envelope in the 
same way (Bricogne, 1988a, §2.3), in the sense that 
the LLG score also provided statistically significant 
indications to guide the progressive editing of the 
unknown molecular envelope which ultimately proved to 
be correct. The resulting phase improvement allowed us 
first to identify selenium positions in new isomorphous- 
replacement data from selenomethionyl-TrpRS crystals 
and subsequently to achieve convergence of the electron 
density phased by all available derivatives to the correct 
structure. 

Our experience is documented in the rest of this 
paper and our success provides the first application of 
the Bayesian phasing methods described by one of us 
(Bricogne, 1988a,b, 1991b, 1993) to the solution of a 
new macromolecular crystal structure for which previ- 
ously available methods were insufficiently powerful. 

2. Data and methods 

2.1. Primary sources of phase information 

Tetragonal (P432~ 2) crystals of Bacillus stearother- 
mophilus TrpRS were grown in 2.1M K2HPO4 at pH 
= 7.5 with 0.0002 M tryptophan and 0.01 M ATP, as 
previously described (Carter & Carter, 1979; Carter 
& Coleman, 1984; Carter, Doublie & Coleman, 1994; 
Coleman & Carter, 1984), and stabilized for X-ray data 
collection by soaking in 3.55 M (NH4)2504 with the 
same ligands. Under these conditions, native crystals 
have unit-cell dimensions a = b -- 60.6 and c -- 232.7 A, 
with a monomer of 328 residues (Mr -~ 37000) in 
the asymmetric unit, and gold-substituted crystals have 
unit-cell dimensions a = b -- 60.7 and c = 232.9A. 
Heavy-atom substitution therefore preserves the unit-cell 
dimensions. 

Native and derivative data sets for TrpRS are com- 
pared in Table 1. They were measured using a multiwire 
area detector and a rotating anode (one native, 4PAR, and 
one mersalyl derivative, Hg4) and with phosphor image 
plates, either with synchrotron radiation (LURE, Orsay, 
France; one native, NAT2, one crystal soaked in 0.001 M 
gold chloride, Aul, and one double derivative prepared 
by soaking the gold derivative in 0.0001 M mersalyl acid, 
AuHg3) or with a conventional rotating-anode source 
(University of Massachusetts Medical Center, Worcester, 
MA, USA; one native, IVN 1, and three selenomethionyl- 
TrpRS crystal data sets, SMT1, SMT2 and SMT4). 
Despite the fact that the crystals themselves diffract to 
about 1.7 A with synchrotron radiation, the crystal-to- 
film distance necessary to resolve reflections along c* 
dictated that all data sets measured from a single crystal 
stop at about 2.9/k because both image-plate instruments 
were constrained to a 0 angle of 0 ° and the multiwire 
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Table 1. Correlation coefficients (on F) between TrpRS 
data sets 

Data sets are grouped into distinct sources of phase information, 
including native crystal data sets (IVNI, 4PAR and NAT2), 
conventional isomorphous derivativcs (Aul,  AuHg3 and Hg4) and 
selenomcthionyl-TrpRS data sets (SMTI,  SMT2 and SMT4). All 
data sets are of high quality, with R,, .... values ranging from 0.044 
(NAT2) to 0.079 (Aul). Correlation coefficients for different 
groups are emphasized by typeface. Those between conventional 
heavy-atom and native data sets are italic, those between the 
conventional heavy-atom data sets themselves are bold and those 
between native and selenomethionyl-TrpRS are bold italic. 

IVNI NAT2 4PAR Aul AuHg3 Hg4 SMT1 SMT2 SMT4 

IVNI 
NAT2 
4PAR 
Aul 
AuHg3 
Hg4 
SMTI 
SMT2 
SMT4 

1.0 0.98 0.95 0.51 0.93 0.90 0.93 
1.0 0.99 0.58 0.6 7 0.55 

1.0 0.66 
1.0 0.94 0.77 

1.0 0.81 
l.O 

1.0 0.97 
1.0 0.93 

1.0 

detectors have too small a solid-angle coverage to allow 
the collection of complete data sets from a single crystal 
at high 0 angle. 

Two qualitatively different sources of isomorphous- 
replacement information for TrpRS are represented in 
Table 1. The first involved the three conventional heavy- 
atom-derivative data sets, one of them (Aul) being used 
as the parent. The second involved the much more nearly 
isomorphous selenomethionyl-TrpRS data sets collected 
from crystals of protein produced by a strain auxotrophic 
for methionine and grown in a medium containing 
selenomethionine (Doublie & Canner, 1992, 1993). In 
order to exploit the latter isomorphous differences for 
phase determination, it was necessary to locate the 
selenium atoms. As noted below, location of these atoms 
in difference Fourier maps calculated with improved 
phases obtained by the process of phase permutation 
proved to be a crucial step in solving the structure. 

2.2. Bayesian phasing methods" and the role of  entropy 
maximization 

In the present context, the Bayesian scheme (Bricogne, 
1988a, 1993) for extracting missing phase and envelope 
information from the available structure-factor ampli- 
tudes consists of: (a) generating multiple hypotheses 
about the missing information so as to form a represen- 
tative sample of all available alternatives (permutation); 
(b) evaluating the degree of corroboration of each hy- 
pothesis by the observed data, as measured by its likeli- 
hood (scoring); (c) combining the a priori probability of 
each hypothesis with its likelihood, by means of Bayes's 
theorem, to obtain its a posteriori probability; (d) making 
decisions, on the basis of these a posteriori probabilities, 
about which hypotheses should be rejected and which 
should be expanded further (statistical inference). 

The book-keeping of the multiple hypotheses thus 
generated is carried out by means of a phasing tree 

(Bricogne, 1984, §8.1; Bricogne & Gilmore, 1990, §3.1), 
whose nodes represent the unique sets of individual 
hypotheses and whose links reflect the parentage rela- 
tionships between them. 

At each stage of the phase determination, the 
symmetry-unique non-origin reflections are divided into 
two sets: a basis set {H} consisting of those reflections 
for which explicit phase assumptions have been made; 
and its complementary set {K} of non-basis reflections 
for which only unphased or poorly phased amplitudes 
are available. Initially, the members of {H} were chosen 
according to their MIRAS figure of merit. In this work, 
we used a value of 0.6, representing a mean phase error 
of 53 ° . This value was considerably greater than the 
corresponding mean phase error of 30 ° used previously 
(Xiang, Canner, Bricogne & Gilmore, 1993) and it reflects 
the fact that the initial phases were of poorer quality and 
that in order to define a sufficiently large basis set we 
had to use a lower threshold. 

The optimal evaluation of both the a priori probability 
and the likelihood of a hypothesis in which phase values 
and a molecular boundary are specified is intimately 
related to the numerical process of constrained entropy 
maximization. If rn(x) denotes the uniform probability 
distribution within the protein region, the goal is to con- 
struct an exponential model, qME(x), for the distribution 
of atoms: 

q~":(×) --[~(x)/Z(¢)] 

LhE II 

(1) 

by adjusting the complex parameters {~h} until the 
Fourier transform of qXIf:(x), {U xl'': }, matches the uni- 
tary structure-factor amplitudes and phases of reflections 
in {H}. This process of 'exponential modeling' produces 
a probability distribution for the random atomic positions 
in the unit cell that has maximum relative entropy, S = 
-fq(x)log[q(x)/rn(x)]d:~x, with respect to the initial 
density re(x), subject to the constraints in {H} and to 
that of solvent flatness. We have previously described the 
various algorithms involved in solving the maximum- 
entropy (ME) equations under the constraint of solvent 
flatness (Bricogne, 1988a, 1991b) using the computer 
program MICE (Bricogne & Gilmore, 1990). To impose 
the envelope constraint, we used an approximation in 
which the solvent regions are reset to their average 
value on each cycle of fitting the exponential model to 
the basis-set structure-factor constraints (Xiang, Caner, 
Bricogne & Gilmore, 1993). While this approximation 
results in a weaker algorithm than a full-blown multi- 
channel entropy maximization, it was shown to be very 
effective with both simulated and experimental data and 
was used in this work without significant modification. 

In the Bayesian method of phase determination, the 
role of this entropy maximization is twofold. First, it 
yields the numerical value of the least entropy loss 
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that has to be accepted in order for the constraints 
attached to each node to be fitted; this is related to the 
a priori probability of the hypothesis associated with 
this node by virtue of the link with the saddlepoint 
method established by Bricogne (1984). Second and 
most important, it creates an interaction between the 
basis and non-basis reflections through the phenomenon 
of maximum-entropy extrapolation: besides reproducing 
the unitary amplitudes and phases attached to each 
node for reflections in {H}, the maximum-entropy dis- 
tribution has Fourier coefficients with non-negligible 
amplitudes [ r r.xIE '-'k I for many non-basis reflections k in 
{K} and - crucially - these amplitudes depend on the 
phase and envelope information attached to the corre- 
sponding node. These extrapolated Fourier coefficients 
have an immediate interpretation in the sense that the 
conditional probability of structure factors in {K} is 
a multivariate Gaussian centered around these values. 
The likelihood of the hypothesis represented by a node 
can then be calculated by integrating this conditional 
probability over the unknown phases of the reflections 
in {K} over the circle with radius equal to the unitary 
amplitude I Uk,,,i,.~l known from the experimental data. 
This is a node-dependent score that reflects the ability of 
the corresponding hypothesis to assign a high probability 
to the measurements in {K} before knowing about them. 

The value actually used to score phase-permutation 
experiments is the increase in conditional probability of 
the data over that obtained from the null hypothesis that 
the atomic positions are distributed uniformly in the cell 
and hence that the data follow Wilson statistics. The 
logarithm of the ratio of these two probabilities is called 
the log-likelihood gain. Summing over all reflections 
gives the global log-likelihood gain (Bricogne, 1988b; 
Bricogne & Gilmore, 1990; Xiang, Carter, Bricogne & 
Gilmore, 1993): 

E(U f<) : ~_, {'ogl,,[(2N/ek)U~, '''~ ?/:'":1 
k aCOIll ri('~/X" 

- l l ' :  

+ k,.,,,lt~ricC/£ lOg { c o s h [  (N/~ck) U~ 'b~' U~ 11'; ] 

- N/2ek [_7~1t': '2}. (2) 

The log-likelihood gain has a privileged status among 
statistics of phase choices, by virtue of the Ney- 
man-Pearson theorem, which states that the LLG is a 
'most powerful' indicator of the relative correctness of 
the model, in the sense that it is minimally vulnerable 
to statistical errors of the second kind (acceptance of the 
null hypothesis when it should be rejected) at any given 
level of exposure to errors of the first kind (rejection 
of the null hypothesis when it should be affirmed) 
(Bricogne, 1991a). Previous tests have demonstrated 
the superior ability of the LLG to identify correct 

phase sets from among a large number generated for 
a small protein structure by conventional direct methods 
(Gilmore, Henderson & Bricogne, 1991). 

In the present work, we do not make use of Bayes's 
theorem, but use the LLG alone as it tends to dominate 
in any case and because the relative weighting of entropy 
loss and LLG entails delicate considerations in view of 
the non-independence of atoms at non-atomic resolution 
(Bricogne, 1993, §1.3). 

2.3. Electron-density maps 

At any stage of phase determination, the appropriate 
representation of the electron density is obtained using 
centroid estimates for the structure factors in { K }. These 
are derived from the first moments of the conditional 
probability distributions by combining the observed am- 
plitudes with Sim-like weight,;: 

(i) for k acentric 

(Uk) = U~ '1'~ [Ii(Xk)/l,,(Xk)]exp (iqp~'";) 

X k  - -  (2N/ek)lrr,,~,.~ rrxlE . '~k ~ k ' 

(ii) for k centric (3) 

(UR) = I "  ,.h t .h (XR) 

Xk -- (N/Ok) "-'krr"bs U£MI'; . 

Fourier synthesis with these structure factors then 
gives a 'centroid' electron-density map analogous to 
the classical centroid map from multiple-isomorphous- 
replacement phasing. 

2.4. Expansion of an insufficient basis set via phase 
permutation 

As described below, we determined at a rather early 
stage of map improvement that our basis sets were 
insufficient, either because of phase errors or because of 
uncertainties in the envelope constraint. Phase permuta- 
tion turned out to be an effective answer to this problem: 
by exploring untested regions of structure-factor space, 
we found a reliable path toward better ME extrapolation 
(increased LLG) and hence towards improved maps. 
Two requisites for expanding the basis set should be 
noted. First, appropriate reflections must be identified 
from {K} that will have the greatest impact on the 
LLG when recruited into the basis set. Second, some 
means is necessary to sample the many possible phase 
combinations as efficiently as possible. Fortunately, the 
necessary tools for dealing effectively with both tasks 
have been developed. 

We had previously learned (Bricogne & Gilmore, 
1990, §3.2.7) that examining the pattern of ME extrapo- 
lation, or more properly the lack thereof, is the key 
to making the best choice of retlections to permute. 
Reflections from {h'} most likely to change the LLG 
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are those for which the measured amplitude is strong but 
ME extrapolation is weak and those that possess strong 
coupling to other similar reflections by triplet and quartet 
phase relations, so that they will expand the second 
neighborhood of the basis set by the greatest number 
of strong LLG contributors. A procedure (COBWEB) 
for carrying out this analysis has been described else- 
where (Bricogne, 1993). MICE provides an approximate 
implementation of this procedure in a function, NEXT, 
to identify such reflections. However, our basis sets 
were all such as to include essentially the entire data 
set in their second neighborhoods, and we initially 
selected reflections simply from those strongly observed 
reflections with the largest discrepancy between I uo,,, I 
and [UM~:[. Later, we made this 'maximum surprise' 
criterion more quantitative by identifying reflections on 
the basis of the estimated vector difference between 
U ''~'~ and U M~:, using the renormalized structure-factor 
expression (Bricogne, 1992): 

( U'"" 2 UV E '~ 
- +1 

\ 

- 2 U ''1'~ UMr:lWt~im (4) 

in this expression, the average cosine of the angle 
between U ''l'~ and U xu': is estimated by the same Sim-like 
weight, Wt.<,,, that is used in (3). 

The direct-phasing problem in crystallography is 
perhaps the quintessential 'factorial experiment'. One 
wishes first to determine simultaneously the effects on 
the electron-density map of a large number of factors 
(individual reflections) that can, a priori, assume many 
different values or levels (phases). Then, one wishes 
to infer from these sets of effects which set of level 
(phase) choices leads to the correct map. The factorial 
nature of the phase problem, and its relationship to the 
task of phase permutation in particular, was recognized 
by Woolfson (1954) and Good (1954). The problem 
of efficiently sampling large volumes of structure-factor 
space has been reconsidered from the viewpoint of error- 
correcting codes by one of us (Bricogne, 1993). In 
principle, it is possible to exploit the periodic nature 
of structure-factor phases with 'magic lattice' sampling 
designs based on coding theory. Factorial experimental 
design has also been a primary focus of our efforts to 
screen for crystal-growth conditions for over a decade 
(Carter & Carter, 1979; Carter, Baldwin & Frick, 1988; 
Carter, 1990, 1992). In the present work, we have 
successfully applied these same methods to the problem 
of phase permutation. We used incomplete factorial 
designs, rather than magic lattices, for two reasons. 
First, the number of nodes required for magic-lattice 
permutations was high enough to prohibit their use on 
a problem of this size with the computing resources 
available to us. Second, the sampling efficiency of 
magic lattices - which were designed for ab initio 

Table 2. 16-node incomplete factorial design .[or .[our 
centric and three acentric reJlections 

R e f l e c t i o n s  were  p e r m u t e d  as  d e s c r i b e d  in the  text ,  w i t h  q u a d r a n t  
p e r m u t a t i o n  for  the  a c e n t r i c  re f lec t ions .  P h a s e  cho ices  a r e  g iven  as  
the  n u m b e r  o f  the  q u a d r a n t ,  b e g i n n i n g  at  45 (1) a n d  c o n t i n u i n g  
c o u n t e r c l o c k w i s e .  T h i s  p e r m u t a t i o n  was  c a r r i e d  o u t  w i t h  bas i s - se t  

p h a s e s  d e r i v e d  f r o m  p h a s i n g  g r o u p  I. 

Node 427 5,1,11 614 1,0,25 2,2,19 400 443 LLG 

37 (Parent) 0 0 0 0 0 0 0 3000 
38 3 2 4 1 1 2 1 2966 
39 4 3 4 2 1 I 1 3151 
40 I 4 4 1 2 2 2 3111 
41 2 4 I 1 1 2 I 3042 
42 3 I 1 2 2 1 2 2990 
43 I 3 I 2 1 I 1 3140 
44 2 2 1 1 2 2 2 2939 
45 4 2 2 2 2 1 2 3017 
46 3 3 3 2 2 I 2 3010 
47 4 I 4 2 I 2 2 3026 
48 2 3 2 1 2 2 1 2982 
49 I I 2 I 1 1 1 3009 
50 1 2 3 1 I 2 I 3040 
51 2 1 3 2 I 1 1 2957 
52 3 4 2 2 2 I 2 3026 
53 4 4 3 1 2 2 2 3085 

Table 3. 24-node incomplete jactorial design .lbr .four 
acentric and three centric re.llections 

R e f l e c t i o n s  were  p e r m u t e d  as d e s c r i b e d  in  the  text ,  w i th  q u a d r a n t  
p e r m u t a t i o n  for  the  a c e n t r i c  re f lec t ions .  P h a s e  cho i ce s  a re  g i v e n  as  
the  n u m b e r  o f  the  q u a d r a n t ,  b e g i n n i n g  at  45 (1) a n d  c o n t i n u i n g  
c o u n t e r c l o c k w i s e .  T h i s  d e s i g n  was  u sed  for  n o d e s  5 4 - 1 2 2  wi th  
bas i s - se t  p h a s e s  f r o m  p h a s i n g  g r o u p  I a n d ,  as s h o w n ,  for  n o d e s  
115 138 wi th  bas i s - se t  p h a s e s  f r o m  p h a s i n g  g r o u p  III .  

Node 6,4,48 7,4,41 10,926 9 8 2 8  2,0,54 0,0.48 9,0,35 LI,G 

14 (Parent) 0 0 0 0 0 0 0 21119 
15 I 3 3 I I I I 2198 
16 3 2 3 3 I 2 1 2087 
17 2 3 I 4 1 I 2 2064 
18 4 I 4 2 1 2 2 2149 
19 3 4 4 I 2 2 2 2100 
20 2 1 2 3 2 1 1 2034 
21 4 4 2 4 2 2 I 2138 
22 1 2 I 2 2 I 2 2(157 
23 3 2 I 3 I 2 I 2063 
24 4 1 I I I I I 2198 
25 2 3 4 I 2 I 2 2040 
26 l 2 4 4 I 2 2 2128 
27 4 3 1 2 2 2 I 2126 
28 2 2 3 I I 1 I 2145 
29 1 4 2 2 I I 2 2116 
30 3 I 4 3 2 1 2 2019 
31 3 3 3 2 2 2 2 2019 
32 I 1 2 4 2 I 1 2113 
33 2 1 3 4 2 2 1 2078 

134 4 4 3 3 2 2 2 21,)63 
135 3 4 1 4 I 2 I 2120 
136 4 2 2 I 2 I 2 2096 
137 I 3 2 3 I I I 2102 
138 2 4 4 2 I 2 2 2104 

phasing on account of their ability to preserve high-order 
interactions - was less critical here, since enough phase 
information had already been developed for the main 
effects of phases to be the dominant factors. 

In an incomplete factorial design, one performs a 
predetermined number of individual tests, each of which 
is represented here by a node of the phasing tree, for 
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Table 4. Permutation of  envelope attributes 

Six different envelopcs were prepared with different binary com- 
binations o f  five different attributes. The permuta t ion  was carried 
out using basis-set phases from phasing group I. 'Mode" refers to 
the choice of  using thc cnvelope directly from the map-edit ing 
program or smoothing it by Fourier  t ransformat ion  and spectrum 
truncat ion to lower resolution. Vs,,~ v rcfcrs to the volume of  the 
solvent, or the stringency of  thc envelope. The  INCL ..... rcfcr to 
three regions, indicated by z sections, that  were either omitted or 
included in the envelope as illustrated in Fig. 6. 

Node Mode I,'s,., 1NCL,, ,,, INCL,, ?. IN('L,,, I I  I.I.G 

79 (Parent) 0 0 0 0 0 2525 
80 I I 1 I 2 2504 
81 2 2 2 2 1 2561 
82 2 2 I 1 1 2539 
83 1 I I 2 1 2479 
84 1 2 2 I 2 2659 
85 2 1 2 2 2 2454 

which factor levels are chosen randomly subject to two 
criteria (Carter & Carter, 1979; Carter, 1992). First, 
main effects should be balanced, i.e., for each factor, the 
numbers of nodes evaluated at each factor level should 
be the same. Second, each two-factor interaction should 
be as balanced as possible, i.e., for factors taken as pairs, 
each combination of two levels should be tested with 
nearly the same number of nodes. The factors in this 
case are reflections to be permuted and their levels are 
phase choices. Designs used in this work (the pattern of 
phase choices for each reflection associated with each 
node) were generated directly using the program INFAC 
(Carter, 1990). 'Envelope permutation' was carried out 
in the same fashion, making choices for the inclusion or 
exclusion of discrete regions of the map and systemati- 
cally permuting these or other binary choices according 
to an incomplete factorial design, with likelihood scoring 
and analysis. Examples of the designs used are given, 
together with the LLG scores for each 'experiment' in 
the design, in Tables 2, 3 and 4. 

A typical scheme for the permutation experiments we 
carried out is illustrated in Fig. 1. Centric reflections 
were tested at their two permitted values and acentric 
reflections were always permuted at four 'quadrant' po- 

sitions: 45, 135,225 and 315 °. The experiment described 
in Fig. 1 was performed using the native amplitudes 
after all phase information had been combined using 
MLPHARE (Otwinowsky, 1991) and when it was appar- 
ent that further map improvement was necessary. From 
the full factorial design of 2048 nodes, we selected 24 
according to the design in Table 3. The analysis for the 
scores in Table 3 is given in Table 7. 

2.5. Significance testing 

The LLG statistic is actually akin to an experimental 
measurement, whose value fluctuates as does a random 
variable. Node-to-node variation of the LLG has many 
causes. Some are under our control (i.e. the values 
of permuted phases or choices of new features of the 
molecular envelope) and give rise to a "signal'. Others 
are less easy to control (e.g. the exact composition of the 
basis set, the precise stopping point of the exponential 
modeling and the values of various parameters in the 
fitting, which cannot always be maintained at precisely 
the same values for all nodes that are to be compared) 
and their contribution is akin to 'noise'. Furthermore, it 
must be recalled that the LLG is calculated from a single 
sample of observations, whereas its statistical properties 
of optimality and freedom from biases are guaranteed 
when it is viewed over an ensemble of samples drawn 
from the same conditional distribution. This intrinsic 
fluctuation in the LLG values associated with different 
phase choices implies, in turn, that inferences about the 
optimal values for permuted phases can only be drawn 
in a statistical sense, by comparing LLG averages for all 
nodes with the same phase for a given reflection. Under 
these circumstances, it is appropriate to employ standard 
significance tests, such as the Student t test, to assess the 
validity of inferences drawn from these averages, relative 
to the residual noise in the LLG ftmction (Bricogne, 
1993, §2.2.4). 

We used t tests to evaluate the significance of a quan- 
tity called the contrast, which is the average difference 
between those nodes for which the sign bit was (+) and 

Permutation: 
[llld~2111a! ', h : l ' I  '-I::h~: ~ 

1350 ;. i ' * 

Quadrant permutation _ I V \ ~ Binar,, pcrmulation t*l 
of 4 accntric rcllcclions- ~ , , ~  } ~ Real ~ 3 ccntric rcflcction~, m,a~ 

18(2 o : 

o 1 1 )N -~ .~ /3 ,  ~ 1 I~ 22b  { - .  - . - o .  

44 :: 23 : 204S ('~mfl3in:uions 

Sampling: 
24 Nodes.  chosen with an i n c o m p l e t e  f ac to r i a l  design.  

give highly significant t-tests. 

Scoring: 
Maximum Entropy Solvent  Flattening provides tim L o g - l A k e l i h o o d  G a i n ,  

a score that is sensitive to the correct  phase choices.  

Fig. 1. Experimental paradigm for statistically sampled 
phase permutation, likelihood scoring and signifi- 
cance testing. A complete factorial experiment in- 
volving permutation of four acentric and three centric 
reflections would involve 2 II or 2048 combinations 
or nodes. Each node has as a basis set the previous 
basis set (roughly 1500 reflections in this work) plus 
specific phase choices for the seven permuted reflec- 
tions. All nodes were subjected to maximum-entropy 
solvent flattening and scored using the resulting 
LLG. Scores were analyzed by multiple regression 
and analysis of variance. Specific illustrations are 
provided in §3. Full designs corresponding to the 
permutations illustrated in Table 6 (nodes 54-78) and 
in Table 7 (nodes 115-138) were sampled with 24 
nodes, selected according to an incomplete factorial 
design. The design matrix for the permutation illus- 
trated in Table 7 is given, together with the IJ,G 
scores fo r  each node, in Table 3. 
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the overall mean for all nodes. Analyses of variance were 
carried out in conjunction with least-squares multiple- 
regression analysis using the MGLH module of the 
commercial program SYSTAT for the Apple Macintosh 
(Wilkinson, Hill & Vang, 1992). An appropriate re- 
gression model for LLGc,lc was first selected by using 
all main effects as a point of departure and evaluating 
different subsets of coefficients by stepwise multiple re- 
gression. Student t tests for individual sign bits were then 
estimated simultaneously for that model by multivariate 
regression of the calculated versus the observed LLG 
scores. 

A second important point concerns the transposition 
of the data required for the statistical analysis. The 
incomplete factorial designs were all constructed by 
balancing the quadrant permutations of acentric reflec- 
tions, rather than by separately balancing their real and 
imaginary components. This decision was confirmed by 
test experiments in which designs were constructed with 
two two-level factors for each acentric reflection. In 
general, analyses of variance for these experiments were 
less satisfactory than those described here. A possible 
reason for this is that, because the sampling is so sparse, 
there is some advantage to balancing the interactions 
between the complex values of the acentric reflections 
(i.e. their phases) rather than the interactions between 
their separate real and imaginary components. In full- 
factorial or magic-lattice designs, this advantage might 
be less important. 

In order to carry out the analysis of the phase per- 
mutation designs, it was therefore first necessary to 
recast the experimental matrices into the fundamental 
degrees of freedom by giving each acentric reflection 
two degrees of freedom, one for each of the real and 
imaginary components, giving each acentric reflection 
two bits of information. This was done as indicated by 
the coordinate values beside each quadrant phase in Fig. 
1, i.e. (1, 1) for 45°; (-1, 1) for 135 ° and so on, as sug- 
gested elsewhere (Bricogne, 1993). This transformation 
is similar to that described previously, in which different 
attributes of crystal-growth factors are balanced with 
each other in the experimental design but are treated 
as separate binary factors in the subsequent analysis 
of crystal-growth screening experiments (Carter, 1990, 
1992). 

3. Results  

3.1. The quali O' of  the initial MIRAS phases 

The quality of phases derived from amplitude dif- 
ferences can be assessed from the difference Patterson 
maps, as these represent in its entirety the signal owing 
to the heavy atom in the presence of noise and of errors 
arising from lack of isomorphism. The sum difference 
Patterson (Blundell & Johnson, 1976) for the difference 
amplitudes (AuHg3 - Aul), which was lhe first of all 

those we obtained to be interpreted and whose solution 
ultimately gave rise to the structure determination, is 
shown in Fig. 2. This derivative proved to have only 
a single mercury site. The highest peak has a height 
of about 9. let. However, that peak is inconsistent with 
the mercury site and therefore represents, along with 
numerous other inconsistent peaks of similar magni- 
tude, the noise level arising from non-isomorphism. The 
strongest peaks corresponding to the correct solution 
rank 8th, 1 lth and 12th overall and have heights of only 
about 4.5o-. They stand out in only one of the three 
Harker sections (w = 1/4). In the other two sections, 
the corresponding peaks are close to the noise level and 
the section u = 1/2 is an unmitigated disaster. This dif- 
ference Patterson was solved only by persistent manual 
examination, after numerous failures with automatic Pat- 
terson search and superposition algorithms (Terwilliger, 
Kim & Eisenberg, 1987). The difficulty experienced 
in solving the Patterson map for this, the best single- 
isomorphous pair, is indicative of the marginal quality of 
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Fig. 2. Harker sections for the combined (isomorphous difl~'rences plus 

anomalous differences) Patterson map fi)r the difference amplitudes 
(IAuHg3! - IAull;  double - gold). All sections are contoured from 
20" in intervals of  0.5o-. The consistent peaks for the correct solution, 
indicated on each section by the symbol +, are at a height of about 
3.5rr. The highly corrupted section u = 1/2 is characteristically noisy in 
all difference Patterson maps obtained for tetragonal TrpRS crystals. 
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the initial phases from which the structure was ultimately 
obtained. 

3.1.1 Origin determination for heavy-atom sites. A 
common origin for mercury and gold sites was derived 
by solving the AuHg3 anomalous difference Patterson 
map, once the mercury site had been determined from 
the sum difference Patterson, and then identifying cross 
peaks between gold and mercury sites. A consistent set 
of Harker peaks in the AuHg3 anomalous difference 
Patterson map (4.30., 3.1o and 2.40" relative to a maxi- 
mum height of 5.80") that were unaccounted for by the 
mercury site (whose peaks were 4.3cr, 3.10" and 2.70") 
also appeared in the Au 1 anomalous difference Patterson 
map and were subsequently interpreted in terms of the 
stronger of two gold sites. Difference Fourier maps were 
also used to confirm the common origin for all sites 
and to identify the known mercury site plus a weaker 
secondary mercury site in the Hg4 derivative data set. 

3.1.2. Fixing the enantiomorph. The use of anoma- 
lous differences for primary phase determination neces- 
sarily incorporates the assumption that the correct choice 
has been made for the space-group enantiomorph. In 
order to fix the enantiomorph, it was useful to recruit 
the native amplitudes into the phase calculation, lso- 
morphous difference Patterson maps involving the NAT2 
amplitudes, though considerably worse than that shown 
in Fig. 2, nevertheless had consistent Harker peaks cor- 
responding to the gold and mercury positions. Atomic- 

parameter refinements to isomorphous differences (Aul 
- NAT2) and (AuHg3 - NAT2) for the previously 
identified sites were initially carried out with REFINE 
for centric reflections only. For each derivative, single 
isomorphous replacement (SIR) and single isomorphous 
replacement with anomalous scattering (SIRAS) phases 
in each enantiomorphic space group were then calcu- 
lated with PHARE (SERC Daresbury Laboratory, 1990) 
and the peak heights were compared for isomorphous 
difference Fourier maps calculated using the difference 
amplitudes for one derivative and the phases from the 
other derivative (Blundeli & Johnson, 1976). For both 
non-isomorphous derivatives, the peak heights were con- 
sistently highest using the SIRAS phases calculated 
in space group P432t2. This choice was subsequently 
confirmed: first by the presence of peaks, rather than 
holes, in the anomalous difference Fourier maps for 
both derivatives using multiple isomorphous replace- 
ment (MIR) phases from both non-isomorphous deriva- 
tives, and finally by the clear presence of right-handed 
c~-helices in the electron-density maps. 

Atomic parameters in both isomorphous and non- 
isomorphous contexts were next refined with MLPHARE 
(Otwinowsky, 1991). Considerable improvement in the 
phases could be detected with parameters refined by 
the maximum-likelihood algorithm in this program. This 
improvement was evident in the enhanced contrast be- 
tween protein and solvent regions and was essential for 

Phasing Group I 
Parent Amplitudes: 

FAul 

I)crivalivcs used for phasing: 
FAuHg3 

FI lg4 

~ ~  Refined Envelope 

Phasing Group II ~: 
Parenl Amplitudes: :! 

:. ~ ~ FNAT2 ' 
• I~riv,tiv¢~ used for ~asing 

, , FAu l 

!! i: ~ g 4  
• ~ ,.!i : ; i ,  ~ . . . . . . . . .  ! 

Selenium Positions 

Phasing Group III 
Parent Ampliludes: 

FNAT2 
l)crivativcs used for phasing: 

FScmct 
FAultg3 

FPb 

~ ~  2.9 A S t r u c t u r e  

Fig. 3. Overall strategy used to solve the tetragonal Bacillus stearothermophilus TrpRS structure. Three different sets of multiple-isomorphous- 
replacement phases were calculated, as indicated by the three phasing groups. The principal results obtained for each set are indicated in 
bold typeface at the appropriate end of each line. Phasing groups I (m~es 1-112) and 11I (nodes 115-139) involved essentially isomorphous 
comparisons in phase calculation; phasing group II, indicated by shading, involved the highly non-isomorphous comparisons between the heavy- 
atom derivatives Aul,  AuHg3 and Hg4 and the NAT2 native amplitudes. Information transfer from phasing group I to phasing group II was 
mediated by the envelope and the heavy-atom positions but not the phases. The AuHg3 data set was incorporated into phasing group Ill because it 
was the most nearly isomorphous of the three derivatives from phasing group I, as indicated by its correlation c¢~efficient with native amplitudes, 
and because including it noticeably improved the map. The third derivative, Pb, was obtained after most of this work had bccn completed as 
described in the text. 
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a satisfactory definition of a starting molecular envelope. 
At this stage, electron-density maps for both sets of 
phases were compared and it was evident that the best 
protein map was that calculated using Aul amplitudes 
and MIRAS phases from the isomorphous subset of 
heavy-atom data sets, AuHg3 and Hg4. 

periodize the known envelope on a large unit cell and 
carry out rotation-function analysis from its transform, 
rather than relying on the cross-rotation peaks of the 
native data sets; however, the Fourier spectrum of the 
envelope itself was limited to 18 ,,~, a resolution range 
for which the available data from the tetragonal form 

3.2. Overall phasing strategy 

As the correlation coefficients in Table 1 and the dif- 
ference Patterson in Fig. 2 suggest, we were faced with a 
plethora of potentially useful but relatively inaccessible 
phase information (§2.1). Heavy-atom derivatives were 
only marginally isomorphous with each other, at best, 
and were severely non-isomorphous with the native 
crystals. The strategy that finally enabled us to solve 
the structure is illustrated in Fig. 3. We made use 
of MESF constrained by phases from three separate 
"phasing groups'. Considerable effort was devoted to the 
use of phasing group I to refine heavy-atom postitions 
and determine the molecular envelope. Using this en- 
velope, we were able with phasing group II to obtain 
sufficiently good native phases to locate the selenium 
atoms in difference Fourier maps. In phasing group 
III, from which the structure was finally solved, the 
envelope and the selenium positions were supplemented 
with data from one of the heavy-atom data sets (AuHg3) 
and an additional lead acetate derivative. Phasing group 
IIl was sufficiently complete to initiate a convergent 
MESF process which led to the full determination of 
the structure. In the following section, we describe the 
role of MESF for each of the phasing groups. 

3.3. Maximum-entropy solvent flattening and phase per- 
mutation 

Electron-density maps calculated using (MIRAS) 
phases from phasing group I were of dubious quality 
and, although in retrospect the helix and sheet regions 
of the TrpRS molecule could have been identified, the 
prospects for solving the structure on the basis of those 
maps were poor. On the basis of our previous experience, 
we began to use the maximum-entropy solvent-flattening 
algorithm in the manner that had previously proved so 
successful with the cytidine deaminase structure (Xiang, 
Carter, Bricogne & Gilmore, 1993). 

3.3.1. The folly of following ME extrapolation. Initi- 
ation of the ME solvent-tlattening process proved to be 
non-trivial. Our hope had been to utilize the molecu- 
lar envelope previously determined for the monoclinic 
crystal form of TrpRS, which had previously been ori- 
ented according to a cross-rotation search using the 
two native data sets (Carter, Crumley, Coleman, Hage 
& Bricogne, 1990). Initial results with ME solvent 
flattening were disappointing. The previously determined 
envelope, although essentially correct, was not correctly 
oriented by the molecular-replacement calculations we 
had done. In retrospect, it might have been possible to 
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Fig. 4. The consequences of using incorrectly extrapolated phase infor- 
mation in the basis set for exponential mcxieling. (a) Resolution limit 
(d*, lower curve) and figure-of-merit threshold (FOM threshold, upper 
curve) of successive basis sets. (b) Extrapolative power of successive 
nodes estimated by the LLG. {c) "Inliltration" and corruption of 
basis set by extrapolated rellections. Although the mean phase error 
estimated by the figure of merit of the phase-probability distribution 
goes up, the LLG goes down precipitously as the resolution is 
increased. The reason is the population of the basis set with strongly 
but incorrectly extrapolated phases+ indicated by the hatched regions 
(from K) in the lower histogram. These extrapolated reflections 
gradually replaced relleclions (from H) from the original basis set. 
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Table 5. Full factorial phase permutation experiments with likelihood ranking 

Each permutation in this table was carried out according to a complete  factorial design in which all possible sign combinat ions  were 
tested fo r  a small number o f  centric reflections. In this and the fol lowing table, the node numbers on the bottom line of  each subsection 
refcr to the node evaluated using the optimal phase choices obtained tbr reflections in that particular permutation experiment. 

Constraints 
Resolution (/~) 

M threshold 
Node  Envelope N o . o f  reflections reflections 

I Original 4.5 
(WI,) F O M  0.5 

1079 

10 Redef* (1) 4.5 6,0,10 
F O M  0.5 1,1,32 

1082 6,0,30 

I I Redcf  (2) 4.5 

Sampling 
strategy 

New Resolut ion Number  Significance tests 
(A) of nodes ~ ( ) 2-tail t '  

Results 

13 Redef  (3) 4.5 "~ 0 "~'~ . . . .  . a  

F O M  O.5 
1083 

LLG LLG 
(range) (recombined) Comments 

1315 1488 Starting node: identified bias introduced 
by using recombined phases as con- 
straints. 

9.3 8 90 0.001 1377 
7.2 (Full factorial) 180 0.043 ( -+ 33) 
6.2 270 0.8111 

10.0 2 0 11.125 

1524 

1708 (I) 
1744 (2) 

1783 
± 58 

18 Rcdef  (4) 3.6 601 10.2 4 315 0.068 2153 
F O M  0.5 506 (Full factorial) 0 0.252 ( ± 53) 

1796 

2523 

23 Redef (3 )  3.9 3,0,21÷ 9.5 4 225 0.031 2051 
F O M 0 . 5  13,0,11 4.6 (Fullfi~ctorial)  315 0.613 ( z  31) 

1545 

28 Rcdcf (5 )  3.9 3,3,11 11.9 4 271) 0.082 2051 
F O M 0 . 5  4,4,11 9.6 (Fu l l l ac to r i a l )  90 0.028 ( ±  47) 

1547 

2118 

Started using data between ~c and 14 A. 

First use of  U,,b, - I: M ~  as selection 
criterion: Added 2,0,22. Rather  modest 
significance test. 

Resolution. envelopes not in sequence. 
These nodes done in parallel with others. 

Y0,21 had a large U , , , , , -  L ~ t '  " (/)(SIR) 
- 45 • q:'{ME) =: 225 . Permutation 

contirmcd q~ME) correct. 

37 Redef  (6) 3.9 605 9.9 8 135 0.008 2377 
I"OM 0.5 1,0,13 17.4 (Full factorial) 225 0.027 ( -+ 331 

155(I 1,0,15 15.0 315 0.169 

* Redef refers to a redelined envelope based on the centroid map of the previous node. obtained automatically by the procedure of 
W a n g  (1985)  and Leslie (1988)  ( W L ) .  

t T h e  3,0,21 w a s  a basis-set reflection that was nonetheless poorly fitted at maximum likelihood. Its phase was permitted for this 
r e a s o n .  

were unreliable. We decided to determine the envelope 
initially from the electron density itself (Wang, 1985). 
We tried defining the envelope using first the lower- 
resolution terms. The MESF map improved, but not to 
the degree we expected from previous experience with 
cytidine deaminase. Next, we tried increasing the size 
of the basis set gradually by including higher-resolution 
reflections after phase recombination of the ME and MIR 
probability distributions (Fig. 4a). An increased figure- 
of-merit threshold value was used on each successive 
step, in an attempt to select only reflections with nearly 
correct phases. Although the maps appeared to improve, 
and the overall figures of merit for basis-set reflections 
also rose, the results were nevertheless disastrous. 

The surest clue that we were headed down an in- 
correct path came from the LLG, which plummeted 
as we increased the resolution (Fig. 4b). The starting 
phase set was too weak and/or too error ridden to 
extrapolate properly, and by recruiting new reflections 
into the basis set from those extrapolated strongly by 
the exponential modeling we were actually only rein- 
forcing incorrect phase indications introduced by the 
extrapolation (Fig. 4c). This conclusion was confirmed 
by the fact that a small but important percentage of 
extrapolated reflections had entered the basis set after the 

first recombination even without extending the resolution 
(4.5 ]k; node 2 in Fig. 4c). Under these conditions, ME 
extrapolation was behaving like a Trojan Horse, bringing 
in strongly but incorrectly extrapolated reflections and 
thereby corrupting the basis set. This behavior had 
already been observed on small test molecules (Gilmore, 
Bricogne & Bannister, 1990, §4.2). 

3.3.2. The need for phase permutation. These ob- 
servations illustrate a fundamental complication of the 
phase problem, namely that it is a multiply branched 
problem (Bricogne, 1984) and that, as the LLG behavior 
clearly showed, the previous purely iterative process 
was incapable of dealing with bifurcations correctly. 
Examination of a list of strongly observed but weakly 
extrapolated reflections outside the basis set (Fig. 5, 
uppermost curve) revealed a number of unphased strong 
reflections that MICE could not reach via ME extrapo- 
lation from the initial phases. Many of these were 
centrosymmetric low-resolution reflections. The pres- 
ence of so many unphased low-resolution reflections 
compounded problems associated with the fact that the 
envelope was poorly defined. Clearly, the constraints 
were insufficient to guide the construction of the dis- 
tribution of atomic positions along the correct lines and 
the primary obstacle appeared to be the absence of these 
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Table 6. Statisticallr designed phase and envelope permutation with likelihood ranking 
Each permutat ion  in the subsequent  selection was performed using an incomplete  factorial design, permitting more  bits o f  phase 

in format ion  to be s a m p l e d  for  each design and. in particular, making  it poss ib l e  to include accntric reflections. 

Constraints 
Resolution (A) 

M threshold Nev. 
Node Envelope No.of  reflections rellections 

54 Redel"* (7) 3.6 1,0.25 
FOM 0.5 2,2,19 

2(X)4 40O 
443 

427 (Re) 
427 (Ira) 

5,1,I I (Re) 
5.1,I I (Ira) 

614 (Re) 
6]4 (Ira) 

79 Redef (5) 3.9 4,4,44 
FOM 0.5 I1,0,9 

1808 1,0,57 
5,4,14 (Re) 
5,4,14 (Ira) 

528 (Re) 
528 (Ira) 
525 (Re) 
525 (hn) 

8,1,38 (Re) 
8,1,38 (Ira) 

86 I n f l  
Inf 2 
lnf 3 

- -  

Inf 4 
Inf 5 
Inf 6 

3.6 
I :OM O.5 

2064 

Sampling 
strategy 

Resohltion Number Signiticance tests 
(A) of nodes ¢ ( ) t tests 

9.2 16 
10.7 (Incomplete 27(1 0.270 
15.2 fractorial) 0 0.004 
10.6 90 0.186 
12.6 345 0.00~ 

10.4 
260 

9.9 315 

4.75 24 180 
5.40 (incomplete 225 
4.08 factorial) 225 
8.25 237 

10.54 31 

10.98 31)(I 

4.75 333 

6 
(Incomplete 

factorial) 

0.(H) l 
0.001 
0.120 

0.000 
0.349 
0.113 
0,022 
0.016 
O.(XX} 
0.000 
0.015 
0.00 I 
0.460 
0.525 

0.003 
0.IX)5 
0.004 
0.003 
0.006 

I11 Inf2_opt+  3.6 2,0,54 4.3 23 90 0.001 
[:OM (1.5 7,0,45 4.4 (Incomplete 225 0.0(H) 

2064 447 10.2 factorial) 0.504 
7,7,44 4.0 0.112 
2,0,52 4.3 18(1 0.002 
6,0.38 5.2 0.968 
1,I,15 14.6 90 0.013 
1,0,24 9,6 90 0.093 

112 Inf 5 3.(> 

* R e d e f  is as  de l i ned  in T a b l e  5. 

Rcsuhs 
LLG 

(range) 

3151 

_+ 106) 

Comments 

Incomplete factorial design provides: 
larger range of ,,alues for I,I,G, 
more paired comparisons for I,I,G: 
more degrees of freedom for each 

phase to be determined" 
more reliahh" phase determination: 
substantially more ellk'ient phase 

determination. 

2525 

_+87) 

Returned to 3.9 A basis set to economize 
on computer time. Likelihood is lower 
for this reason and should be compared 
to 2377. which was the resulting LLG 
after the last full factorial experiment. 

2659 

_+ 103) 

2721 

_+ 46) 

Five factors sampled with six nodes (Inf_l 6): 
calct.lation mode (use edited map): 
solvent volume (use light boundary): 
region I (don't include): 
region 2 (include): 
region 3 (include). 

Overall variance of design I,L(i ~ alues 
is reduced, suggesting that the permuted 
reflections have a smaller impact on the 
map. [ h e  3.9 A phase determination is 
nearing completion and the remaining 
problem is to "tinetune" the envelope. 

2812 l, ikelihood phase relinement 

4" Inf_2 .opt  refers to an e n v e l o p e  i n c o r p o r a t i n g  all o f  the correct choices  m a d e  on  the bas is  o f  the  e n v e l o p e  p e r m u t a t i o n .  

strong low-resolution reflections from the basis set. We 
therefore decided to permute phases for several of these 
and to try using the LLG, in a statistical sense, as a 
criterion for the correctness of these phase choices. The 
results of this decision are presented in some detail in 
Tables 2-7 and documented in Figs. 5, 9 and 10. Nodes 
are numbered sequentially from 1. The phasing tree is 
essentially unbranched, exploring only the buds in each 
successive permutatioa. Nodes summarized in Tables 
5 and 6 were developed with optimal phase choices 
inferred after each permutation. 

3.3.3. Complete factorial permutation searches with 
significance testing. Our first impulse was to proceed 
cautiously, using full factorial designs for one or several 
centric reflections representing a small number of bits of 
new phase information (Table 5). The approach was to 
use the LLG as an experimental score and to analyze the 
results of all experiments for the main effects of phase 
choices (+ 1 or - 1) for each reflection, using conventional 

analysis of variance (Wilkinson, Hill & Vang, 1992). 
This approach is a standard extension of what we have 
used in screening crystal-growth experiments (Caner, 
1992) and although it lacE,; the power of the multidimen- 
sional Fourier analysis of the LLG (Bricogne, 19931, it 
nevertheless captures the intent of that suggestion. 

Our use of statistical significance testing of the impact 
of phase assumptions on the LLG is in marked contrast 
to previous use of permutation methods in this context 
(Sj61in, Prince, Svensson & Gilliland, 1991), where 
no tests of significance were carried out. Clearly, the 
analysis of variance provides considerably more reliable 
guidance than does a simple comparison of any score 
obtained for different nodes. Moreover, in our experi- 
ence, the entropy is rarely correlated significantly with 
the correct phase choices. 

The immediate results were very encouraging. Using 
eight different nodes representing all possible combi- 
nations of phases for three centric reflections, we got 
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statistically significant indications for two of them. The 
LLG increased - something we had previously been 
unable to bring about by any choice of envelope. More- 
over, recombination with the MIRAS phase-probability 
distributions brought about an even bigger increase in 
the LLG. Several subsequent factorial designs brought 
ten correctly phased outlying reflections into the basis 
set and increased the LLG from 1315 to 2377. 

It is worth noting that one reflection that figured 
in these initial permutations, 3,0,21, was a basis-set 
reflection, included with its MIRAS phase on account 
of its high figure of merit. It was nevertheless identified 
as a possible problem reflection because it failed to 
fit very well in the exponential modeling and as a 
result had a very large renormalized structure-factor 
amplitude. When it was permuted (node 23 of Table 5), 
it became evident that it had been phased incorrectly by 
isomorphous replacement. 

3.3.4. Increasing sampling efficiency with incomplete 
factorial permutation designs. Once these ten new re- 
flections were phased, we were faced with the problem 
of permuting acentric reflections, which can in principle 
take on any value between 0 and 27r. Encouraged by the 
success of binary permutation of centric reflections by 
complete factorial designs, we permuted subsequent re- 
flections using incomplete factorial designs as described 
in §2.4 and Fig. 1. The performance of these designs was 
superior to that observed for the full factorial designs 
(Table 6). Owing to the fact that the contrasts were 
evaluated from a larger number of experiments, the 
significance tests improved greatly, despite the fact that 
the number of experiments per bit of phase information 
was also lower (eight experiments for three bits - second 
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Fig. 5. Rellections least expected by ME extrapolation. The 50 largest 
values for ]Fob~ - FMF'I, as estimated using (5) with structure-factor 
amplitudes rather than unitary structure-factor amplitudes, for some 
of the nodes represented in Tables 5 and 6. As phase determination 
proceeds, these decrease significantly in magnitude, indicating that 
the strength and accuracy of the extrapolation is improving. Node 
numbers correspond to those in Tables 5 and 6. Plots lor nodes 86 
and 111 arc too similar to be easily distinguished from one another, 
so only node 86 is shown. 

and eighth rows of Table 5 - versus 24 experiments for 
11 bits of information - second and fourth rows of Table 
6). This reflects the familiar dependence of the precision 
of an estimate on ( N -  1) -1/2 for N observations of 
a given unknown quantity. For the initial designs, we 
were comparing averages of as few as two observations, 
whereas for the 24-node designs we were comparing 
averages of 12 observations of the LLG, improving 
the confidence of the estimates for each bit of phase 
information by a factor of around 3. 

Testing the significant contrasts jointly from a multi- 
variate regression model, rather than individually, en- 
abled us to infer how the LLG score would behave 
outside the subset of nodes sampled by the incom- 
plete factorial design and hence to make optimal phase 
choices, in most cases for all permuted reflections. The 
actual information content provided by these designs is 
somewhat greater than that estimated purely on the basis 
of the design matrix. This is because the ratio between 
the contrasts for the real and imaginary components 
of a permuted acentric phase can be interpreted as an 
indication of the actual phase angle, via its inverse tan- 
gent. In brief, reflections for which the real or imaginary 
component is dominant probably have phases closer to 
0, 90, 180 or 270 ° than to 45, 135,225 or 315 °. We have 
verified this expectation by performing a permutation of 
one such reflection over a 90 ° range in intervals of 10 °. 
The maximum LLG was obtained very close to the value 
indicated by the inverse tangent of the real and imagi- 
nary component contrasts. This phenomenon probably 
accounts for the weak significance tests for some, if not 
most, of the 'relatively insignificant" phase indications in 
Table 6, where the uncertainty is concentrated in either 
the real or the imaginary component of the phase. Similar 
behavior had previously been observed in a wide range 
of calculations performed by one of us (GB, unpublished 
results), where these phase estimates were recycled into 
the multisolution process. We therefore now routinely 
use the inverse tangents of the two contrasts to phase 
acentric reflections, assuming the phase to be purely 
real or purely imaginary when only one contrast is 
significant. 

As an example, the analysis for nodes 114-138 (Table 
3) is presented in Table 7. The LLGob~ values range from 
2019 (nodes 130 and 131) to 2198 (nodes 115 and 124), 
with a mean value of 2099 (the constant term in the 
model). The magnitude of the individual contrasts with 
significant t tests (the coefficients of the linear model) 
ranges from 5 (the sign of the 0,0,48) to 26 (the real part 
of the 6,4,48). The latter is around 1% of the average 
score. Its t test, however, is significant at about one 
part in 10 7. The predicted LLG~.alc for the optimized 
phase choices, obtained by adding the coefficients in the 
second column of Table 7, was 2229 with a standard 
error of 10.6. The LLG,,b~ for the 'best' node of the full 
factorial, obtained by a supplemental node expansion 
using the indicated signs and quadrants permitted by 
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Table 7. Log-likelihood gain scoring gives sign(/~cant phase indications./or seven reflections 

Results o f  multiple regression analysis for the final phase -pe rmuta t ion  (nodes 115-138, Table  3) exper imcnt  pe r fo rmed  after  all sources 
of  phase in format ion  had been included and the exponential  model ing carried out  to convergence,  with phase  recombinat ion.  At this 
point,  there were still s t rong unphased rcflcctions whose incorpora t ion  into the basis set had a consistent significant effect on thc 
depcndcnt  variable,  which was the LLG,+,.  The analysis included 24 nodes f rom the imcomple te  design plus the parent  node,  for a total  
o f  25 nodes. The  observed LLG,,b~ values in this design ranged f rom 2019 to 2198 with a mean of  2098.6. The contras ts  (coefficients o f  
the regression model)  are indicated in bold typcface in co lumn two, as are the cor responding  Student  t tests and their probabi l i ty  under  
thc null hypothesis  that that  par t icular  phase bit has no effect on thc LEG, in co lumns  six and seven. The  opt imal  phase  choiccs inferred 
f rom the contras ts  in co lumn two. the final phase calculated f rom the relined structure and the er ror  o f  the phase choices appea r  in 
co lumns  eight to ten. The  regression model  tbr LLG~,,,~, had a multiple R = 0.984, a squared multiple R = 0.969 and an adjusted squared 
multiple R = 0.951. The  s tandard  error  o f  the LLG~.:,~. es t imated f rom the model  was 10.653. Thc  statistics in Tables  5 and 6 were 
obta ined  f rom similar analyses of  wiriance tables lbr the respective designs. 

S tandard  Standard  Studcnt 
Variable Coefficient error  coefficient Tolerance  t test 

Constant 21t98.612 2.131 0.000 984.97 
Re 6,4,48 26.199 2.485 0.547 0.766 10.542 
Rc 7,4,41 10.374 2.268 0.217 0.920 4.575 
Re I 0,9,26 3.050 2.631 0.064 0.683 I. 159 
Im 10,9,26 - 7.061 2.850 0.147 0.582 - 2.477 
Re 9,8,28 17.351 2.284 0.362 0.907 7.597 
Im 9,8,28 17.824 2.488 0.372 0.764 7.164 
Sign 2,0,54 22.313 2.337 I).466 0.866 9.5511 
Sign 0,0,48 -5.346 2.571 0.112 0.715 -2.079 
Sign 9.0.35 21.243 2.799 0.443 0.604 7.589 

Source Surn-ot'-squares 

Regression 53382.214 
Residual 711 . . . . .  

(2-tail) P ¢,,,,, ........ , ( ) qk.,,,,. ( ) Aq~ ( ) 

0 .10E- 14 
0.25E - 07 0 27 27 
0.36E - 03 0 I 1 
0.264 
0.026 66 101 35 
0.16E-05 
0.33E - 05 46 86 40 
0.91E - 07 90 90 0 
0.055 180 180 0 
0.16E-05 135 135 0 

Analysis of variance 
DF Mean-square F ratio P 

9 5931.357 52.263 0.105066F 8 
15 I 13.490 

the permutation, was 2196. However, that obtained for 
node 139, evaluated with optimal phase choices, using 
inverse tangents of contrasts for acentric reflections as 
described above, was 2230. Statistical inference of the 
actual phases from the 24-node sample therefore actually 
provided better choices than simply moving to the node 
of the full factorial permutation that was indicated as 
the best. 

3.3.5. Ranking hypotheses about the molecular enve- 
lope. At the outset, we were uncertain not only about 
the phases but also about the molecular envelope used 
for imposing solvent flatness. The latter uncertainty was 
reflected in the fact that the majority of the reflections 
permuted in Tables 5 and 6 were predominantly strong 
low-resolution reflections whose most important contri- 
bution was in defining the envelope. Consequently, after 
each round of phase permutation, maximum-entropy 
solvent flattening and phase recombination, the new cen- 
troid map could be used as a template for improving the 
envelope. This process continued to improve the phases, 
as indicated by the curves representing histograms of 
the largest renormalized structure factors I(4), Fig. 5]. 
We nevertheless realized that a number of attributes of 
the molecular envelope remained ambiguous and were 
not being resolved effectively by the recruitment of new 
phases into the basis set. We reasoned that, since the 
values of the LLG would be sensitive to the choices 
made in editing the envelope (Bricogne, 1988a, §2.3), 
these ambiguities could be resolved directly by the same 
mechanism of hypothesis testing as had been used at the 
previous stage to infer the values of hitherto unknown 
phases. 

Five possible modifications of the envelope that could 
be encoded in binary fashion were permuted in the sixth 
design. In particular, we had experimented with several 
different algorithms for preparing the envelope map, 
including direct editing (Minor, 1992) and reciprocal- 
space weighting of a truncated map (Leslie, 1988) and 
were uncertain about the molecular volume. We were 
also uncertain whether or not to include three prominent 
features of the map, where the electron density, though 
weak, was nevertheless consistent with protein density 
(Fig. 6). We therefore carried out an incomplete factorial 
search for the correct choices for six of these factors 
(Table 6, resulting in node 86). As with the phase- 
permutation experiments, the LLG scoring criterion pro- 
vided statistically significant choices for each factor. 
Resolution of the three ambiguous regions resulted in 
considerable improvement in about twenty reflections 
with moderately strong renormalized structure factors 
(compare the plots for nodes 79 and 86 in Fig. 5). These 
three indications regarding redefinition of the envelope 
were later checked, once the structure was solved and 
refined, and were found to be correct. 

Although we observed nothing to indicate that the 
process we were following would not readily converge 
on the correct structure, the map was still difficult to 
interpret at this stage and we were anxious to incorporate 
the { I F s e l e n i u m l  - I F, ulfu,]l differences and to use the re- 
sulting phase information to help solve the structure. The 
optimized envelope, OPT l, enabled us to initiate ME 
solvent flattening of the native map phased with the non- 
isomorphous derivative MIRAS phases, as described 
next. 



D O U B L I E ,  X I A N G ,  G I L M O R E ,  B R I C O G N E  A N D  C A R T E R  177 

. . . .  > Y 

1 
v 

. . . . .  > Y . . . .  > Y . . . .  > Y 
i i i i  i i i 

' I 

Regions 1 ( - - - )  & 3 ( ); Sections z = 6 - 12 Region 2 ( ~ ) ;  Sections z =15-20 

Fig. 6. Regions of  the envelope that  were subjected to permuta t ion  analysis according to the design in Table 4. Z sections (1/240) of  an asymmetr ic  unit  

(0 < x < 1; 0 < y  < 1) of  the envelope maps are shown as stereo pairs as indicated.  The enzyme monomer  is cont inuous  f rom the bo t t om left at z = 0 to the 

top left at z = 1/8. The boundar ies  of  the permuted  regions are indicated in color,  with the innermost  boundar ies  drawn in two-point  contours  and the 

ou te rmost  boundar ies  in four-point  contours .  

2 0 .  

< 

10 

0 

20 

~!iiiii!!! 
iiiii!i!i| iii171i 
177iilil ~77iiii 
~i!i!i!~!! iiiii!i!i 

i Selenium Peaks 

ii!ii!!!i! 10 
[i 

rll-ll   !;117 1;117 o 
i "  | i i i i . . . | . | i i i  i i  i . . | | i i . 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4  

Peak  N u m b e r  

,¢- 

~!!!!~! 1!1!!71 

i!Tiii! 
iiiiTii 

! 

• Se len ium Peaks  

¢ q  
¢ q  

¢q ¢¢~ 

liiii Oli  
| i m m | i i i  | i m i I I I I I I | | I i 

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4  

Peak  N u m b e r  

(a) (b) 

Fig. 7. Relative peak heights in (a) the II FSeMet I - I FNAT2 I ' ~ OMIRAS] and (b) the II FSeMet l--[ FNAT2 i, ~pMESFI difference Fourier  maps .  The three 

largest peaks are 'ghosts '  of  the heavy-a tom sites that  could not be el iminated by the various scaling and tempera ture  factors that  were applied.  Peaks  

corresponding to the selenium atoms are indicated by residue number  and shaded black. 

2.0 

1.8 o 

1.6 

1.4 

1.2 

1.0 

I..4 @ e,. 

0.6 o" 

0.4! 
¢/) 

, "  0.2 

U 
0.0 

0.100 

• . . . . .  11" % 

~_~ 
X 

---,m--, auhg3_PHP_ 
---'~'--" auhg3_R 
. . . .  ~"'~ Pb PH P 
....... '~ ...... Pb_R 

- SeMet PH P 
8 SeMet R 

L S "  . , . . - ,  " ' 

• ' " " " I " " " " " I ' " " " ' I " " " ' " I " " " " " I " " ' " " 

0.150 0.200 0.250 0.300 0.350 0.400 

d* 

Fig. 8. P r imary  phasing statistics for phasing group III. The phasing power is est imated f rom the ratio of  the r .m.s ,  heavy-a tom scattering factor  to the 

r .m.s ,  lack-of-closure error.  The Cullis R factor is obta ined f rom the rat io of  the mean lack-of-closure error  to the mean i somorphous  difference.  



178 MACROMOLECULAR PHASE PERMUTATION AND LIKELIHOOD SCORING 

(a)  (a)  

(b) (b) 

(c) (c) 

Fig. 9. Electron-density maps for the C-terminal a-helix in the tetragonal 
TrpRS crystals. All the maps are contoured at 1.5o. (a) MIRAS 
3.1 ,~ map. (b) Centroid 3.1 ,& map after ME solvent flattening and direct 
phase determination using the permutation results obtained for phasing 
group I. Superimposed on each map is the C a tracing of the interpreted 
map, shown in (c), and, in yellow, the (Fseleniurn - Fnat ive)  difference 
Fourier map phased from node 112 of Table 6 (the same difference map 
is superimposed on all three successive electron-density maps). 

Fig. 10. Electron-density maps calculated using NAT2 amplitudes and 
phases derived from phasing group III, including (b) the map that was 
ultimately interpreted. (a) MIRAS map calculated using all derivatives 
indicated in Fig. 3. (b) NAT2 centroid map after MESF refinement 
and one round of phase permutation (node 139, Table 7). (c) NAT2 
[I 2Fobs - Fcalc I, ~Pcalc] map obtained for the refined structure at an R 
factor of 0.18 for all data with I / t r>2 .0  for reflections between 7 and 

o 

2 . 9 A .  
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3.4. Location of selenium atoms by difference Fourier 
synthesis using phases determined by MESF using the 
improved envelope 

As noted earlier, there are two families of data sets 
for tetragonal TrpRS crystals, which are not isomorphous 
with each other. The first phases we obtained were for 
heavy-atom data sets, because we could not locate the 
selenium atoms from the isomorphous difference Patter- 
son for the ( F , w l c n  ..... cthioni,3c - F , , a t i v c )  difference amplitudes 
representing the (F~.l~,i,,,, - F~ul,~,r) differences. TrpRS 
has 10 methionines and the difference Patterson was 
too complicated to interpret readily, either manually or 
by automated methods. Nonetheless, we expected that 
locating the selenium atoms would greatly enhance the 
phase quality tbr the native structure, because the two 
data sets were so much more nearly isomorphous than 
were the heavy-atom and native data sets involved in 
phasing group I. We used the refined atomic positions 
for the heavy atoms from phasing group I and refined 
them against difference amplitudes involving the NAT2 
native data, which had the best scaling statistics of the 
three native data sets, giving phasing group II. The sele- 
nium positions were very uncertain in the isomorphous 
difference Fourier map calculated with these phases, as 
indicated in Fig. 7(a). To improve the phases sufficiently 
to identify them, we began applying the ME solvent- 
flattening process for the native map calculated with the 
NAT2 amplitudes and group II phases, constrained by 
the refined OPT1 envelope. 

Centroid phases obtained from ME solvent flattening 
of the native map after one cycle of phase recombi- 
nation with the MIRAS probabilities (node 113) pro- 
vided definitive locations for eight of the ten selenium 
atoms in a difference Fourier map with coefficients 
{~Vt.,,i,,. × [Fselenomethioninc - Fnativcl, ~MI-:}. Eight spheri- 
cal peaks from this map (Fig. 7b) subsequently refined 
to give SIR phases for the native amplitudes. One 
additional selenium position, for Met 105, was then 
identified from a difference Fourier map calculated with 
the SIR phases. Residue 105 is in a region of the 
sequence for which the refined isotropic B values are 
greater than 40,/k ~ and is immediately followed by a 
stretch of seven residues for which the density is poorly 
defined. The 10th selenium-atom position was that for 
Met 1, which could not be positively identified until 
the structure was essentially solved. The nine positions 
of which we could be confident, together with the 
known amino-acid sequence, provided valuable guidance 
in interpreting the map. Group III phases were soon 
thereafter supplemented by a new derivative prepared 
with trimethyllead acetate (Holden & Rayment, 1991), 
which independently confirmed the selenium-atom po- 
sitions. The lead derivative was highly isomorphous 
but was weakly substituted (occupancies of 0.3-0.4 on 
an absolute scale) and hence produced only a slight 
improvement in the map. 

It is of some interest to look back (Fig. 8) at the 
three derivatives from which the final electron-density 
map was obtained: the double derivative, AuHg3, the 
selenomethionyl derivative, SMT2, and a trimethyllead 
acetate derivative, Pb. Phasing-power values were 1.3 for 
SMT2, 1.2 for AuHg3 and 1.0 for Pb. Cullis R factors for 
centric reflections were 0.70 for SMT2, 0.83 for AuHg3 
and 0.79 for Pb. Moreover, all values deteriorate abruptly 
beyond 5.0 A resolution for all three derivatives. These 
phasing statistics illustrate the marginal quality of the 
primary phases and demonstrate the critical role of the 
SMT isomorphous differences and hence of the whole 
Bayesian phasing procedure that acted as a 'bootstrap' 
and made the exploitation of these differences possible. 

4. Discussion 

4.1. Rescuing phases from non-isomorphous derivatives 

The ability to locate the nine selenium atoms in iso- 
morphous difference Fourier maps after phase improve- 
ment with MICE represents an unprecedented recovery 
of useful phase information from an inauspicious set of 
non-isomorphous differences. Not only is the difference 
Patterson (Fig. 2) that is typical of the heavy-atom 
substitution obtained for TrpRS very noisy, but the signal 
itself is rather weak. The contrast between the relative 
peak heights for the two sets of phases illustrated in Fig. 
7 is convincing evidence for the recovery of substantial 
phase information from these heavy-atom derivatives. 

Post-hoc verification of the phase indications by com- 
parison with phases calculated from the refined structure 
is possible only for the permutation shown in Table 7 
as no refined model yet exists for the non-isomorphous 
structure represented by the Aul amplitudes. However, 
the indications obtained in Table 7 are in good agreement 
with phases calculated from the model superimposed 
on the maps in Fig. 10. All three centric indications 
were correct and the mean phase difference for the four 
acentric reflections is 26 °. 

4.2. Improvement in the electron-density maps 

The evolution of the electron-density maps that ac- 
companied the phase permutation experiments is illus- 
trated in Figs. 9 and 10. Fig. 9 demonstrates the extent 
to which we have been able to recover from the residual 
non-isomorphism in the phasing group I data sets. The 
region shown contains part of the C-terminal c~-helix, 
which contains three of the nine methionines. The map 
in Fig. 9(a) was calculated using the phasing-group-I 
MIRAS phases to 3. l A. The map in Fig. 9(b) is the 
centroid 3.1 A map after ME solvent flattening combined 
with the phase and envelope permutations documented in 
Tables 5 and 6. The map in Fig. 9(c) is the 2.9 A centroid 
map for native data with phases from group Ill after 
ME solvent flattening, using MIRAS constraint phases 
obtained from both SMT and lead derivatives, followed 
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by one 24-node l 1-bit phase permutation (Table 7). 
The interpreted n-carbon model and (SMT - native) 
difference Fourier map are superimposed on all maps, 
which arc contoured at 1.5cr. Fig. 10 shows a similar 
series of maps for the map improvement achieved with 
MICE for phasing-group-Ill maps superimposed on thc 
complete model of the refined structure. 

The MIRAS map from phasing group I was unin- 
terpretable throughout most of the asymmetric unit. The 
density of the n-helix illustrated in Fig. 9(a) is represen- 
tative of most of the map. The density is fragmented and 
many connections are incorrect. The density in Fig. 9(b), 
corresponding to the phases from node 112 of Table 6, 
which represent the best phases we obtained by MESF 
from the group-I data sets, is significantly improved. 
That map might eventually have been interpreted had 
the other sources of phase in|ormation been unavailable 
to us. More important, however, is the fact that the 
improvement of the map between Figs. 9(a) and (b) 
relative to Fig. 9(c) demonstrates that the process we had 
initiated and carried forward with phasing group I was 
converging to the correct map. Locating the selenium 
atoms produced better starting phases and we were 
therefore able to abandon phasing group I in favor of 
the much more direct path to the structure provided by 
phasing group III. In fact, we are now continuing with 
the group-I phasing path in order to identify post-hoc the 
conformational changes in the heavy-atom derivatives 
responsible for the loss of isomorphism. 

The MIRAS map calculated with phasing-group-III 
phases was much more readily interpretable than that 
for phasing group I. However, there were still places 
where the density was broken (Fig. 10a). The MESF 
map for phasing group III, enhanced by the permutation 
experiment shown in Table 7 (node 139, Fig. 10b), is 
quite similar in quality to those produced by MESF for 
cytidine deaminase (Xiang, Carter, Bricogne & Gilmore, 
1993). There is little difference between this map and the 
{2]Foh~l - IF~lc], ,Yc~l~} map shown in Fig. 10(c). 

4.3. Phase permutation affects all reflections 

An important aspect of these phase permutation stud- 
ies is that, by enlarging the basis set with the addition 
of those reflections most unexpected by the exponential 
model fitting done in MICE, the extrapolation improves 
for all reflections outside the basis set. This is illustrated 
in Fig. 5, which shows plots of amplitudes for the most 
unexpected reflections associated with each major node 
of the phase determination documented in Tables 5 and 
6. The pertinent observation is that the overall level of 
'surprise' (indicated by the asymptotic behavior of the 
plots) drops by about 35% for all reflections, not only 
those new reflections incorporated into the basis set. 
This is a graphic presentation of the fact that the LLG 
has increased, showing that the phenomenon is global 
and not restricted to a small subset of reflections. This 

'pleotropic' effect of including new strong reflections 
into the basis set is one of the most promising aspects of 
these results, because it shows that phase determination 
need not be carried out for more than a small subset 
of the reflections before the centroid map becomes 
interpretable. Rather, it benefits from strong coupling of 
phases induced by the various constraints, particularly 
that provided by the envelope. 

4.4. Sampling efficiency 

The theory of error-correcting codes provides useful 
insight into the origins of the power of incomplete fac- 
torial designs. An error-correcting code is a set of code 
words in which additional bits are used to separate each 
code word from the others sufficiently for it to become 
possible both to detect whenever errors have occurred 
and to recover the correct code word in cases when the 
received word does contain an error (Thompson, 1983). 

Incomplete factorial experiments are, in a statistical 
sense, also error-filtering devices. They provide the 
means of detecting 'errors' in the best of the tested 
nodes through calculation of the contrasts for each phase 
bit - the average difference between nodes using one 
of the two phase choices and those using the other 
choice. When these choices are made simultaneously 
for many reflections, the ensemble of contrasts points 
rather effectively toward the 'correct' node, even though 
it is not usually among the set of nodes tested in the 
design. As was suggested heuristically before (Carter, 
Baldwin & Frick, 1988; Carter, 1990, 1992), these 
designs have the property that the more efficient they 
are the more accurate their phase indications. Our re- 
sults were uniformly more satisfactory when we used 
incomplete factorial designs involving more nodes with 
larger numbers of reflections. The significance tests were 
more decisive, while the sampling was more efficient. 

Although this increase in efficiency with the increase 
in dimensionality may at first seem paradoxical, it de- 
rives from a combination of two properties. First, sphere 
packings can be found in high-dimensional spaces that 
are much denser than the usual primitive square packing. 
They can become especially dense in certain 'perfect' 
lattice designs exemplified by the Golay code, in which 
each code word is surrounded by approximately 2 ~ 
nearest-neighbor lattice points that are not code words. 
Second, higher dimensionality provides for the averaging 
of increasing numbers of nodes, thereby increasing the 
precision of the statistical indications regarding which of 
the nearby untested nodes is the correct one. 

The increases in efficiency seen in Table 6 versus 
Table 5 support the conclusion (Bricogne, 1993, §2.2.2) 
that truly miraculous gains are achievable by using 
designs based on error-correcting codes. Such designs 
share with incomplete factorial designs the property that 
they are based on the geometry of high-dimensional 
spaces; in addition, they are based on periodic lattices so 
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that the statistical analysis of scores attached to them can 
be performed using multidimensional Fourier analysis 
(Bricogne, 1993, §2.2.4). Coding theory also provides 
useful criteria [e.g. packing density and covering radius 
(Thompson, 1983)] for evaluating design matrices such 
as those we use for incomplete factorial experiments, and 
these additional criteria should help improve the designs 
themselves. 

they were predicted to work (Bricogne, 1984, 1988a, 
1993). Together with our previous work with ab initio 
phasing at low resolution for the monoclinic form of 
TrpRS crystals (Carter, Crumley, Coleman, Hage & 
Bricogne, 1990), these new developments bring us one 
step closer to the point where the Bayesian approach 
may be able, in at least some cases, to solve protein 
structures ab initio. 

4.5. Likelihood phase refinement 

At several stages, we have used a rudimentary imple- 
mentation of phase refinement based on optimization of 
the LLG with respect to the basis-set phases (Bricogne, 
1984, 1988a; Bricogne & Gilmore, 1990, §2.5). An 
illustration of this use is shown in the fifth row of Table 
6. The improvement in LLG obtained by adjustment of 
the basis-set phases is nearly twice the range of LLG 
values in the preceding permutation and represents 
a tangible improvement in the centroid electron 
density. 

5. Summary 

These results demonstrate that the value of the log- 
likelihood gain reached after maximum-entropy solvent 
flattening provides an accurate and sensitive criterion 
for correct choices among different hypotheses regarding 
the constraints. These constraints include both reflec- 
tions for which experimental phases are missing or 
incorrect because of lack of isomorphism and features 
of the unknown molecular envelope. The success of 
this approach depends on the robustness of the log- 
likelihood-gain criterion, proper selection of reflections, 
appropriate sampling procedures for phase permuta- 
tion and, crucially, on the performance of conventional 
Student t and F-ratio significance tests on the resulting 
LLG scores to select reliable indications in an objective 
fashion. 

The incomplete factorial designs used in this study 
yield a significant increase in screening efficiency over 
conventional full factorial designs. Designs involving 
16-24 nodes repeatedly produced significant correct 
indications for up to 11 bits of phase information (four 
acentric and three centric reflections) simultaneously. 
This already provides a useful degree of efficient sam- 
piing for macromolecular data sets, tractable with cur- 
rently available computing power. The very high sam- 
pling efficiency of higher-order phase interactions that 
can be achieved using 'magic lattice' designs based on 
coding theory gives the approach some spare power 
to deal with even worse starting phases when larger 
computing resources become available. 

The results reported here demonstrate the utility of 
the Bayesian phase-determination methodology for a 
difficult unknown protein crystal structure of substantial 
molecular weight. The methods we have tested work as 
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Abstract 

A general program for the refinement of quasicrys- 
talline structures using diffraction data is presented. 
The program can be used for both icosahedral and 
polygonal quasicrystals. The refinement process is 
based on the fitting of the structural model to experi- 
mental diffraction data and observed density and 
chemical composition. Superspace formalism is used 
for the structure description and the hypersurfaces in 
superspace describing the atomic positions are 
assumed to be parallel to the internal space. No 
additional a priori assumption on the form of the 
atomic hypersurfaces is necessary except that the 
deviations of the atomic-surface contours from a 
spherical shape do not contain very short wave 
components in a significant amount. The contours of 
each symmetry-independent atomic hypersurface in 
internal space are parametrized in terms of linear 
combinations of radial functions (surface harmonic) 
invariant for the hypersurface point group in internal 
space. This allows a continuous refinement of the 
structure in terms of symmetry-adapted parameters 
consistent with the symmetry restrictions resulting 
from the postulated superspace symmetry. The pro- 
gram requires an initial very approximate guess of 
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the structure in terms of 'spherical' hypersurfaces of 
which only the symmetry centres are known with 
confidence. The continuous parametrization of the 
hypersurfaces does not a priori restrict their form, 
except in its degree of complexity or fine detail, 
which is limited by the number of terms considered 
in the linear expansion of the surface contours. In 
general, the number of surface harmonics considered 
should be consistent with the accuracy allowed by 
the experimental data set. The refinement process 
can be performed either by a full least-squares 
method or by means of a simplex algorithm. The 
physical consistency of the refined hypersurfaces with 
respect to the predicted density, chemical composi- 
tion and interatomic distances is controlled by 
including additional 'penalty functions' in the 
parameter to be minimized. 

I. Introduction 

Accurate determination of the structures of quasi- 
crystals (QCs) is still an open problem. The introduc- 
tion of superspace formalism (Bak, 1985: Janssen, 
1986) represented important progress towards 
achieving a quasicrystalh~graphy comparable with 
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